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ABSTRACT

In this paper we present OpenMOLE, a scientific frame-
work providing a virtualized runtime environment for dis-
tributed computing. Current distributed execution systems
do not hide the hardware and software heterogeneity of
computing and data resources whereas OpenMOLE pro-
vides generic services to develop distributed scientific al-
gorithms independently from the execution environment ar-
chitecture. OpenMOLE uses abstraction layers to dele-
gate computing tasks with the same high level interface
for the major underlying architectures: local processors,
batch systems, computational grids, Internet computing
and cloud computing. The file access abstraction layer is
another key feature helping a generic usage of the compu-
tation power provided by grids and clusters. The Open-
MOLE framework has been tested with the exploration
of a bacterial biofilm simulation with an individual-based
model.

KEYWORDS: Task Delegation, Grid Computing,
High Perfomance Computing, Distributed Simulation
Exploration, Design of Computer Experiments.

1. INTRODUCTION

The computational grid concept was originally pre-
sented as a metaphor of the US power grid [1]: a global
infrastructure where end-users can access computing
power on demand. But this concept clashes with re-
ality. Indeed, end-users are faced with heterogeneity
of the execution environments. Power grid has to deal
with potential difference and electricity flow, whereas
computational grid has to deal with not only network
and computing power availability considerations, but
also higher level concepts like operating systems, pro-
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cessor architectures and available applications. Even if
grid infrastructures are able to take advantage of stor-
age and computational power through the grid mid-
dleware, a fine-grain analysis is still necessary at the
user level to achieve a successful execution on such an
environment.

The main object of this paper, is to describe
distributed computing facilities within OpenMOLE.
OpenMOLE is a scientific framework, which aims at
providing a virtualized runtime environment. In this
approach the user can be confident that an experi-
ment successfully executed on a local computer will be
successfully executed on other execution environments
without preliminary tests or software installation.

This paper is organized as follows. Section one de-
scribes existing tools to execute jobs on large scale
grid computing and clusters. The lack of existing
tools compared to our main goal are pointed out. Sec-
tion two presents novel methods implemented in Open-
MOLE providing a transparent access to various dis-
tributed computational environments.

2. RELATED WORK IN DISTRIBUTED EX-
ECUTION MANAGEMENT TOOLS

Batch systems such as openPBS!, Condor? or Sun Grid
Engine’ (SGE) and grid middleware like globus [2],
gLite [3] or DIET [4] provide integrated commands
and/or specific Application Programming Interfaces
(API) to submit and manage jobs as well as transfer
data.

"http://www.pbsgridworks.com/
2http://www.cs.wisc.edu/condor/
3http://gridengine.sunsource.net/



Even though these distributed execution systems share
many common concepts, the set of commands provided
by each of them is specific. In this context, using ab-
straction layers is a key issue to easily benefit from
the distributed computing power independently of the
underlying architecture. A well designed generic ab-
straction layer for computational resources should al-
low the use of local processors, batch systems, compu-
tational grids, Internet computing and cloud comput-
ing through the same high level interface.

2.1. Ganga

Ganga [5] is a Python application for job management.
Ganga allows local and distributed executions on many
grid middleware and batch systems based on: openpbs,
Isf (distributed by Platform?*), dirac [6] and gLite [3].

Even though Ganga provides a generic job manage-
ment on many cluster and grid environments, it does
not provide a full support for accessing grid storage
elements and file servers. Ganga enables the user to
define input and output files for jobs. This function-
ality fits the “bag-of-task” [7] paradigm, in which a
job is transfered jointly with data it refers to in an
object called input sandbox. However in many real
distributed simulation cases, jobs need to access large
files. In this case, this voluminous file should not be
mentioned in the input sandbox. Otherwise the file
would be uploaded whenever the job is launched in-
stead of being stored once and for all on a storage
element.

In our experience, this missing functionality prevents
designing generic jobs. Indeed, the lack of generic
file access interface necessitates writing specific (for
a given execution environment) file access instructions
in the job executable code. Therefore, the file access
abstraction layer is another key feature for generic us-
age of the computation power provided by grids and
clusters.

2.2. G-Eclipse

G-Eclipse’ [8] is an integrated workspace environment
for accessing grid computing power. It is based on
Eclipse®. G-Eclipse provides high-level abstractions
for grid resources such as job management services,
authentication services and information services. This
abstraction layer is adaptable for various kinds of dis-

4http://www.platform.com/
Shttp://www.g-eclipse.eu/
®http://www.eclipse.org/
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tributed execution environments. Currently, the g-
Eclipse project supports implementations for two grid
middleware systems: gLite’ [3] and gria [9] and one
cloud computing service: Amazon EC2 (Elastic Com-
pute Cloud)®. These three environments are based on
similar concepts but on radically dissimilar architec-
tures, illustrating the genericity of the g-Fclipse mid-
dleware abstraction layer.

Besides the generic access to several grid systems, g-
Eclipse provides an implementation of the Eclipse file-
system (efs) to access grid storages. efs is an abstrac-
tion layer in which files are referenced by Uniform
Resource Identifier (uri)s °. Actual file accesses are
achieved using dynamically registered modules con-
taining implementations of the file system access pro-
tocols. Various implementations of efs are available,
among them: SFTP, HTTP, CVS. Implementations
for gLite [3] file access protocols have been developed
by the g-Eclipse project, including the following proto-
cols: GridFTP (the grid file transfer protocol) and srm
(Storage Resource Management). An implementation
for the on-line storage Amazon S3 is also available.

G-Eclipse provides very useful classes to interact with
various execution environments in a generic way. How-
ever its development has been more focused on build-
ing a nice graphical interface interacting with the grid
than a nice application programming interface (API).
A consequence for developers is that further develop-
ment based on it, might be tricky.

2.3. JavaGAT and JSAGA

Java Grid Application Toolkit (JavaGAT) [10] is a
Java API designed to abstract various distributed ex-
ecution environments. It is designed as an extensible
environment in which modules for accessing computing
platforms can be plugged. Modules, also called “adap-
tors”, for execution systems (such as gLite, Globus,
SGE, SSH) and for remote file system access (such as
HTTP, FTP, SFTP or GridFTP) are currently avail-
able. On this work basis, the Simple API for Grid Ap-
plications (SAGA) [11] generalizes the JavaGAT archi-
tecture by providing a language-independent specifica-
tion for accessing distributed execution environments.
Several implementations of SAGA have been achieved
in C++, Python and Java. This approach, endorsed
by the Open Grid Forum (OGF), is the most promis-

"http://glite.web.cern.ch/glite/

8http://aws.amazon.com/ec2/

9URIs are normalized in the RFC3986, they allow identifying resources
on a network such as servers, web services or files



ing we have seen for a transparent access to remote
computing and storage resources.

3. OPENMOLE

Tools such as G-Eclipse, Ganga or JSAGA simplify the
access to distributed execution environments, however
they do not hide the hardware and software hetero-
geneity of computing resources. From our previous
work on grid computing [12, 13], this drawback pre-
vents developing distributed scientific algorithms in-
dependently from the execution environment architec-
ture. In order to tackle this problem, OpenMOLE
takes advantage from generic interface of JSAGA and
provides, on top of that, a virtualized runtime environ-
ment as shown on Figure 1. Transparent delegation of
scientific algorithms to remote environment becomes
possible within OpenMOLE. Indeed, virtualizing guar-
antees a successful achievement of the remote execu-
tion.

[ Scientific algorithms

} Scientific layer

<

[ OpenMOLE

Virtualized environment

[ JSAGA

Generic interface

Software layer

Service layer

Figure 1. Layer Architecture of the OpenMOLE
Framework.

3.1. Execution Environment Constraints

OpenMOLE is a framework providing distributed com-
puting facilities. It has been designed to work out of
the box on the user desktop with the idea of completely
hiding the fact that computation may be carried out
on distributed environments. To achieve this goal one
has to respect certain constraints:

1. the end-user must be able to define and integrate
his own software components in OpenMOLE,
which should be able to execute them remotely,

2. OpenMOLE should not rely on preliminary in-
stalled software on the target environment,
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3. OpenMOLE should be autonomous in accessing
various remote execution environments, without
requiring third party servers,

4. the end-user’s desktop computer can be con-
nected to the Internet without being necessarily
the owner of a public IP address (Internet access
via a Network Address Translation (NAT) system
is enough).

Constraints 1 and 2 have been established so that the
user can work on his own algorithms, without knowing
how to deploy or execute them on various execution
environments. OpenMOLE should provide means to
integrate external programs, which can then be exe-
cuted directly and with confidence on targeted execu-
tion environments despite the hardware and software
heterogeneity.

Constraint 3 ensures the scalability and the user-
friendliness of the application. No central server is
required by OpenMOLE in between the user desktop
computer and any targeted execution environment.
Furthermore, the user desktop computer may not it-
self act as a server because of constrain 4: actually
user computers are usually behind a NAT.

Those constraints should be taken into account in our
framework in order to make the execution environment
transparent for the end-users. This gives rise to major
problems:

e How can we address the portability issue of user
defined software components on heterogeneous ex-
ecution environments?

e How can we access various execution environ-
ments in a generic way without relying on a third
party server?

3.2. Portability of User Defined Software Compo-
nents

In order to tackle this problem, OpenMOLE provides
generic services implemented in the “Task” class. A
task is executed in a specific Context and uses some
given Resources. As exposed on Figure 2, the “Task”
class has been defined including concepts of execution
context and required resources. This design makes it
possible to migrate and execute tasks remotely. The
“Task” class is polymorphous and each specialization
of “Task” is provided as a new service. Tasks use
resources and are executed in an execution context.
The resources can be files, libraries or software pieces,



which must be available at runtime. The context con-
tains the variables that are used by the task at run-
time. Each context matches particular execution con-
ditions.

Task 0.* Context
is executed in
uses
0..*
Resource Variables

Figure 2. UML Class Diagram for the Task Class.

By default OpenMOLE provides a set of predefiened
tasks. These tasks are designed to support external
resources such as Java jar libraries or Octave'® script
files. This way third party software pieces can be in-
troduced in the OpenMOLE framework.

Since tasks can be migrated, they should be portable
from one environment to another. In OpenMOLE, the
heterogeneity of the various execution environments is
mostly addressed by using the Java Virtual Machine
(JVM) virtualization system. To our mind, virtual-
ization is the right way to support task portability.
For such purpose, the JVM is a mature virtualization
system. Furthermore it is:

e executable in user space (no need to get special
rights or special operating system kernel to exe-
cute it),

e compatible with most current operating systems,

o fast,

e available as free (as in speech) software!!.

For tasks calling binary x86 code, several versions of
the same executable files can be defined as resources.
The appropriate version of the resource is automat-
ically selected at runtime. This solution works but
is not sustainable in the long term. Binary software
pieces should be packaged for each execution environ-
ment. The packaging stage may result in problems
that will be only encountered at runtime. In that case,
it is clear that this solution does not solve the problem

Onttp://www.gnu.org/software/octave/
"http://openidk. java.net/
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of remote execution in a transversal and reliable man-
ner. In the future we plan to address the problem of
execution of binary code on remote environments by
using full hardware virtualization on top of the JVM.
The Java library JPC!? provides such solutions.

3.3. Delegation of the Tasks

In the previous part (3.2) we presented a solution for
delegating a task from one computer to another. How-
ever the problem of accessing the distributed execu-
tion environment from the user desktop still remains.
In this part a method for task delegation taking into
account constraints described in Section 3.1. is pre-
sented. This method has been designed to run on any
environment containing at least both a file storage and
a job submission system.

This method is shown in Figure 3. The first step con-
sists in storing the required files for the remote execu-
tion, meaning:

e an archive, called “runtime”, containing the Java
Virtual Machine and the OpenMOLE framework,

e a “Task” object as well as its execution context
serialized in a file using the XStream'? library,

e the files required to deploy the resources on the
target environment.

Once this steps have been completed, a job is trans-
mitted to the submission system. Let us specify that a
job contains the references of the previously uploaded
files and a location where it will copy the results at the
end of the process. At the very beginning of its exe-
cution, the job prepares the environment on the com-
puting node: it downloads the runtime, deserializes the
task and its execution context, downloads and deploys
the resources. Then it runs the task in that context.
Doing that, the context is modified and output files
are produced. Finally, it stores those outputs back on
the storage system at the predefined location. During
job execution, the OpenMOLE framework tracks its
state. Once it is finished the results are downloaded
and made available on the local computer for the user
or for another task.

Job submission and data transfers within OpenMOLE
benefits from the abstraction layers of JSAGA. On top
of that it provides both transparent portability of task

R2http://www-jpc.physics.ox.ac.uk/home_home.
html
Bhnttp://xstream.codehaus.org/
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Figure 3. UML Sequence Diagram of the Delegation of
a Task in a Distributed Execution Environment.

and transparent access to various execution environ-
ments. By doing so, OpenMOLE implements the func-
tionality to switch task execution from one execution
environment to another in a declarative way.

The delegation mechanism of task execution described
in this section is fully implemented in the OpenMOLE
platform. It is furthermore refined with advanced
functionalities such as transparent compression/de-
compression of files during transfer operations, auto-
matic files integrity checking by computing/verifying
hash values, automatic task resubmission in case of
failure, multi-threaded transfer of the files in back-
ground. This method has been extensively tested on
the EGEE' grid and is being currently implemented
for SGE and for remote servers accessible via SSH.

3.4. A Small Example

By design, it is straight-forward in OpenMOLE to
switch from a local task execution to a remote one. Be-
tween those two options a only few changes are made.
For instance, lines of code below expose how to im-
plement in OpenMOLE a task which launches a Java
model. The model is contained in a Java jar archive.

Ynttp://www.eu-egee.org/
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It requires a file parameter and produces an output file
named “result.txt”.

/+x — Local machine execution - =*/
JavaTask model = new JavaTask();

model .addJarResource (
"/home/user/model. jar")

model.addFileResource ("file",
"/home/user/file.txt")

model.setCode ("Model m =
new Model (file); \n"+
"m.run () \n");

model.addOutputFile ("result.txt");
LocalEnvironment.submit (model) ;

First a “JavaTask” object called “model” is instanti-
ated. Then two resources are associated to this object:
a jar resource and the file parameter. The file param-
eter is referenced by the variable named “file”. The
Java code for launching the model is then mentioned.
This code uses the variable “file” which points at the
file parameter. After that, the task is set to retrieve
the output file named “result.txt”. At the end of the
code, the task is executed on the local computer.

The code bellow exposes the additional code required
to execute the task “model” on the virtual organiza-
tion (VO) “vo.iscpif.fr” of the EGEE grid. An instance
of the class “GliteEnvironment” is instantiated by pro-
viding the name of the VO, the URL of the authentica-
tion service and of the URL of the information service.
After that, the task is parameterized to be executed
on the grid.

/+ — Additional code for grid execution — */
GliteEnvironment env =
new GliteEnvironment ("vo.iscpif.fr",
"voms://gridl2.lal.in2p3.fr:20013"
+ "/O=GRID-FR/C=FR/0O=CNRS/OU=LAL/"
+ "CN=gridl2.lal.in2p3.fr",
"ldap://topbdii.grif.fr:2170");

env.submit (model) ;

3.5. Real Explorations Using OpenMOLE

In addition to the task delegation mechanism, Open-
MOLE provides a workflow engine for specifying com-
plete scientific experiments in a naturally parallel man-
ner and independently from a specific execution envi-
ronment. OpenMole task delegation mechanism de-
scribed in this paper has been involved in the explo-



ration of complex-system simulation models from var-
ious application fields, among which:

e the exploration of an individual-based bacterial
biofilm model [14]: OpenMOLE allowed distribut-
ing Octave batches on a cluster operated by the
PBS batch system,

e the characterization of the dynamics of a
predators-prey simulation model [15] for 360 000
combinations of values for 5 input parameters of
the model,

e the computation of a viability tube during the
French project INCALIN' for a Camembert
cheese mass-loss model [16].

In the detail, the computation of viability tubes aimed
at studing the dynamics of a Camembert cheese mass-
loss model using the viability theory [17] and the al-
gorithm described in [18]. The model under study is a
controllable model as discribed in figure 4. The model
has two kinds of inputs: a state (the weight of the
cheese, the micro-organisms’ activity...) and a con-
trol (the conditions for temperature and humidity in
the ripening chamber, which can be modified in order
to modify the dynamic of the ripening process). The
model computes a new state of the cheese the next day
depending on the initial state and control for this day.

day n :
y control variables dayn+1

¢
Model

state variables —> » state variables

Figure 4. The Controllable Model.

The viability algorithm aims at finding all the dynam-
ics of the model that lead, at the end of the process,
to states which respect a set of constraints. An ex-
ample of constraints is that the ripened cheese should
not weight less than 250grammes for legal reasons and
should not weigh more than 270 grammes to fit the
packaging.

The global idea of the viability tube computation is to
start from the last day of the process and compute the
tube backwards. Let us call the last day of the ripening

Bhnttp://incalin.csregistry.org
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process the day n. First, the states of day n respecting
the set of predefined constraints are computed; it is
called the target of the day n. Then, the algorithm
explores all possible states of the day n—1. For each of
them, it runs the model with all the possible controls.
If it finds at least one control allowing to reach the
target the state is considered as viable and is added
to the target the day n — 1. The algorithm is iterated
until day 1 using the successive targets.

The figure 5 shows an OpenMOLE’s workflow for dis-
tributing the viability tube algorithm computation.
The first task explores the space of the states for the
current day, called day d. It launches an instance of
the second task for each state. The second task takes
a state and the target of day d as input. It explores,
for the given state all the possible controls and pro-
duces the list of controls for which the resulting state
of the model belongs to the target of day d. If the
list is empty it means that the input state can not be
considered as viable. When all the instances of the
second task have been executed, the results are aggre-
gated by the third task and the target of day d — 1 is
computed. The value of d is decreased. The process
is iterated with the new target. This workflow ends
when the current d is no longer greater than 0.

target

result

Exploration
of the space
of the states

Aggregation
of the results

Viability
model

Figure 5. Example of Work ow Used for Computing a
Viability Tube.

Computing a viability tube using this method involves
running the model 74 million times. The total execu-
tion time is 1 year of computation on a single modern
computer. Fortunately, in OpenMOLE the task exe-
cutions can be easily delegated to a distributed envi-
ronment. For this experiment, executions of the sec-
ond task have been delegated to the EGEEgrid. The
tube has been computed in only a few hours. Once the
workflow is running on a single computer, the complex-
ity of grid execution delegation is entirely hidden by



OpenMOLE, that implements algorithms to efficiently
execute batch of jobs on a grid.

4. CONCLUSION AND PERSPECTIVES

This paper first exposes some of the available frame-
works simplifying the access to distributed execution
environments. These frameworks do not bring a so-
lution to all the difficulties that a scientist encounters
when he tries to execute his own algorithm on a dis-
tributed computation environment. In particular they
don’t propose methods and tools:

e to port user defined software components from
one environment to another,

e to fully hide the technical and methodological as-
pects of computation environments.

OpenMOLE addresses both of them. By doing so,
it uncouples the scientific business layer (defined in
OpenMOLE’s tasks) from the execution layers. For
now, OpenMOLE proposes tasks to execute Java code,
binary code, to manipulate files and many others...
Even if those tasks might be used to describe lots
of computational operations in diverse scientific fields
they cannot claim to be exhaustive. The possibility of
integrating new task types defined by advanced users
through an OpenMOLE extension API is being worked
on. It will turn OpenMOLE into a fully modular and
extensible platform.

A graphical user interface (GUI) will shortly enable
setting task parameters in a user-friendly environ-
nement. The GUI will also simplify the use of the
workflow functionalities. As already stated, the ex-
ecution of the tasks can be linked with each other
through a complete workflow system in order to de-
scribe complete scientific numerical experiments. By
this means, the scientific logic is uncoupled from any
execution environment and ready for distributed ex-
ecution. To optimize this execution, optimal tasks
scheduling among all the accessible execution environ-
ments can be achieved. This work may lead to taking
advantage from the accessible execution environments
of different kinds and getting the best of them. For
instance it would be possible to achieve fast compu-
tations by scheduling jobs optimally between a grid,
with huge computational power a high latency, and
a symmetric multi-processor server, with low latency
but small computational power.

The last point we are working on, is the collabora-
tive design of workflow libraries proposing meaningful
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workflows. Those workflows could implement various
scientific algorithms such as: optimization by genetic
algorithms, parallel execution of the replications of
stochastic simulations or viability process in a reusable
way. By providing the possibility to achieve commu-
nity work within OpenMOLE;, scientists could be able
to work in a collaborative way using, creating, modi-
fying and executing OpenMOLE workflows.
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